Skip to content
Vatican Observatory
  • About
    • Overview
    • Team
    • FAQ
  • Telescopes
    • Overview
    • Telescope Images
  • Latest
    • Overview
    • Resources
    • Press
    • Audio
    • Video
    • Research
    • Authors
      • FAQs
    • Newsletter
    • Tucson Meteor Cameras
  • Podcast
  • Education
    • Overview
    • Resource Center
    • Image Gallery
    • Summer School
    • Books
    • Software
    • Additional Resources
    • ACME
    • Ambassadors
  • Shop
  • Calendar
  • Support
    • Overview
    • Donate Now
    • Smart Ways to Give
    • Sacred Space Astronomy
      • View Content
    • Fr. Coyne Fundraiser
    • Bequests / Trusts
    • The Foundation
      • Newsletters
      • Annual Reports
  • Press
  • Specola Vaticana
  • Contact
    • Contact
  • About
    • Overview
    • Team
    • FAQ
  • Telescopes
    • Overview
    • Telescope Images
  • Latest
    • Overview
    • Resources
    • Press
    • Audio
    • Video
    • Research
    • Authors
      • FAQs
    • Newsletter
    • Tucson Meteor Cameras
  • Podcast
  • Education
    • Overview
    • Resource Center
    • Image Gallery
    • Summer School
    • Books
    • Software
    • Additional Resources
    • ACME
    • Ambassadors
  • Shop
  • Calendar
  • Support
    • Overview
    • Donate Now
    • Smart Ways to Give
    • Sacred Space Astronomy
      • View Content
    • Fr. Coyne Fundraiser
    • Bequests / Trusts
    • The Foundation
      • Newsletters
      • Annual Reports
  • Press
  • Specola Vaticana
  • Contact
    • Contact

NASA’s InSight Lander Detects Stunning Meteoroid Impact on Mars

By Robert Trembley  |  10 Nov 2022

Share:
  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share via Email

This entry is part 52 of 60 in the series Encore

The agency’s lander felt the ground shake during the impact while cameras aboard the Mars Reconnaissance Orbiter spotted the yawning new crater from space.

NASA’s InSight lander recorded a magnitude 4 marsquake last Dec. 24, but scientists learned only later the cause of that quake: a meteoroid strike estimated to be one of the biggest seen on Mars since NASA began exploring the cosmos. What’s more, the meteoroid excavated boulder-size chunks of ice buried closer to the Martian equator than ever found before – a discovery with implications for NASA’s future plans to send astronauts to the Red Planet.

Scientists determined the quake resulted from a meteoroid impact when they looked at before-and-after images from NASA’s Mars Reconnaissance Orbiter (MRO) and spotted a new, yawning crater. Offering a rare opportunity to see how a large impact shook the ground on Mars, the event and its effects are detailed in two papers published Thursday, Oct. 27, in the journal Science.

The impact crater, formed Dec. 24, 2021, by a meteoroid strike in the Amazonis Planitia region of Mars, is about 490 feet (150 meters) across, as seen in this annotated image taken by the High-Resolution Imaging Science Experiment (HiRISE camera) aboard NASA’s Mars Reconnaissance Orbiter. Credits: NASA/JPL-Caltech/University of Arizona

The meteoroid is estimated to have spanned 16 to 39 feet (5 to 12 meters) – small enough that it would have burned up in Earth’s atmosphere, but not in Mars’ thin atmosphere, which is just 1% as dense as our planet’s. The impact, in a region called Amazonis Planitia, blasted a crater roughly 492 feet (150 meters) across and 70 feet (21 meters) deep. Some of the ejecta thrown by the impact flew as far as 23 miles (37 kilometers) away.

With images and seismic data documenting the event, this is believed to be one of the largest craters ever witnessed forming any place in the solar system. Many larger craters exist on the Red Planet, but they are significantly older and predate any Mars mission.

“It’s unprecedented to find a fresh impact of this size,” said Ingrid Daubar of Brown University, who leads InSight’s Impact Science Working Group. “It’s an exciting moment in geologic history, and we got to witness it.”

This meteoroid impact crater on Mars was discovered using the black-and-white Context Camera aboard NASA’s Mars Reconnaissance Orbiter. The Context Camera took these before-and-after images of the impact, which occurred on Dec. 24, 2021, in a region of Mars called Amazonis Planitia. Credits: NASA/JPL-Caltech/MSSS

InSight has seen its power drastically decline in recent months due to dust settling on its solar panels. The spacecraft now is expected to shut down within the next six weeks, bringing the mission’s science to an end.

InSight lander selfie – taken April 24, 2022. A thick layer of dust can be seen on the lander and its solar panels Credits: NASA/JPL-Caltech.

InSight is studying the planet’s crust, mantle, and core. Seismic waves are key to the mission and have revealed the size, depth, and composition of Mars’ inner layers. Since landing in November 2018, InSight has detected 1,318 marsquakes, including several caused by smaller meteoroid impacts.

But the quake resulting from last December’s impact was the first observed to have surface waves – a kind of seismic wave that ripples along the top of a planet’s crust. The second of the two Science papers related to the big impact describes how scientists use these waves to study the structure of Mars’ crust.

This video includes a seismogram and sonification of the signals recorded by NASA’s InSight Mars lander, which detected a giant meteoroid strike on Dec. 24, 2021, the 1,094th Martian day, or sol, of the mission. Credits: NASA/JPL-Caltech/CNES/Imperial College London

Crater Hunters

In late 2021, InSight scientists reported to the rest of the team they had detected a major marsquake on Dec. 24. The crater was first spotted on Feb. 11, 2022, by scientists working at Malin Space Science Systems (MSSS), which built and operates two cameras aboard MRO. The Context Camera (CTX) provides black-and-white, medium-resolution images, while the Mars Color Imager (MARCI) produces daily maps of the entire planet, allowing scientists to track large-scale weather changes like the recent regional dust storm that further diminished InSight’s solar power.

The impact’s blast zone was visible in MARCI data that allowed the team to pin down a 24-hour period within which the impact occurred. These observations correlated with the seismic epicenter, conclusively demonstrating that a meteoroid impact caused the large Dec. 24 marsquake.

“The image of the impact was unlike any I had seen before, with the massive crater, the exposed ice, and the dramatic blast zone preserved in the Martian dust,” said Liliya Posiolova, who leads the Orbital Science and Operations Group at MSSS. “I couldn’t help but imagine what it must have been like to witness the impact, the atmospheric blast, and debris ejected miles downrange.”

Establishing the rate at which craters appear on Mars is critical for refining the planet’s geologic timeline. On older surfaces, such as those of Mars and our Moon, there are more craters than on Earth; on our planet, the processes of erosion and plate tectonics erase older features from the surface.

New craters also expose materials below the surface. In this case, large chunks of ice scattered by the impact were viewed by MRO’s High-Resolution Imaging Science Experiment (HiRISE) color camera.

Subsurface ice will be a vital resource for astronauts, who could use it for a variety of needs, including drinking water, agriculture, and rocket propellant. Buried ice has never been spotted this close to the Martian equator, which, as the warmest part of Mars, is an appealing location for astronauts.

This animation depicts a flyover of a meteoroid impact crater on Mars that’s surrounded by boulder-size chunks of ice. The animation was created using data from the High-Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter.
Credits: NASA/JPL-Caltech/University of Arizona

More About the Missions

JPL manages InSight and the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the Mars Reconnaissance Orbiter, InSight spacecraft (including its cruise stage and lander), and supports spacecraft operations for both missions.

Malin Space Science Systems in San Diego built and operates the Context Camera and MARCI camera. University of Arizona built and operates the HiRISE camera.

A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors, and the Italian Space Agency (ASI) supplied a passive laser retroreflector.

Unedited version of cover image:

Boulder-size blocks of water ice can be seen around the rim of an impact crater on Mars, as viewed by the High-Resolution Imaging Science Experiment (HiRISE camera) aboard NASA’s Mars Reconnaissance Orbiter. The crater was formed Dec. 24, 2021, by a meteoroid strike in the Amazonis Planitia region. Credits: NASA/JPL-Caltech/University of Arizona

Andrew Good, Jet Propulsion Laboratory, Pasadena, Calif. 818-393-2433, andrew.c.good@jpl.nasa.gov
Karen Fox / Erin Morton, NASA Headquarters, Washington, 301-286-6284 / 202-805-9393, karen.c.fox@nasa.gov / erin.morton@nasa.gov
Source: NASA Press Release 2022-163, Last Updated: Oct 27, 2022, Editor: Tony Greicius


Commentary by Bob Trembley

I have seen countless images of large settlements on the surface of Mars – like this one:

Mars settlement colony
Above ground Mars settlement. Credit: SpaceX

If this impact had occurred on top of, or nearby such a settlement, it would be a disaster of epic proportions! It’s convenient, but not logical to ignore how many fresh impact craters have been observed on Mars.

Mars Impact Crater
100 foot (30 meter) crater on Mars – created between July 2010 and May 2012. Credit: NASA/JPL-Caltech/Univ. of Arizona

I also note that the article mentions that sub-surface water on Mars would be useful to future astronauts. We have to be absolutely sure that there is no extant life on Mars, before there’s any talk about landing Humans there. Try as we might to prevent it, humans WILL introduce Earth-based microbes into the Mars environment.

Mars gets clobbered HARD by asteroids. If humans intend on living there, they’ll probably want to have a robust asteroid tracking and deflection system… And a good emergency alert system!

Share:
  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share via Email

Sacred Space Astronomy

The Vatican Observatory’s official digital community and online magazine.

Become a Member

Recent Posts

From The Backyard: Seasons Change

By Fr. James Kurzynski  |  27 Mar 2023

Conjunction of the Moon and Pollux – March 29-30

By Robert Trembley  |  27 Mar 2023  |  Sacred Space Astronomy

Conjunction of the Moon and Mars – March 28

By Robert Trembley  |  27 Mar 2023  |  Sacred Space Astronomy

Ask an AI about the History of Astronomy

By Mr. Christopher Graney  |  25 Mar 2023

Archives

      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • October
      • September
      • August
      • July
      • June
      • May
      • April
      • March
      • February
      • January
      • December
      • November
      • August
      • June
      • March
      • January
      • November
      • October
      • December
      • November
      • April
      • May
      • January
      • December
      • September
      • May
      • March
      • December
      • November
      • February

More Posts in this Series:
"Encore"

78  |  What Do We Lose When We Sacrifice Science?

By Br. Guy Consolmagno  |  27 May 2021  |  Sacred Space Astronomy

69  |  To err is human… to admit it, is science

By Br. Guy Consolmagno  |  25 Mar 2021  |  Sacred Space Astronomy

51  |  ‘The beauty of great music’: A Vatican astronomer’s 50-year love for Rory Gallagher

The Irish Times  |  14 Nov 2022  |  Sacred Space Astronomy

53  |  Conference on the Inspiration of Astronomical Phenomena (INSAP)

By Ms. Katie Steinke  |  9 Nov 2022  |  Sacred Space Astronomy

54  |  Across the Universe – a month in the life

The Tablet  |  9 Nov 2022  |  Press

Newsletter

Upcoming astronomical events, scientific breakthroughs, philosophical reflections… just a few reasons to subscribe to our newsletter!

Vatican Observatory
  • About
  • Telescopes
  • Latest
  • Podcast
  • Education
  • Shop
  • Calendar
  • Support
  • Press
  • Specola Vaticana
  • Contact
Privacy Policy  |   Cookie Policy  |   Disclosure Statement

Podcast:

  • Apple Podcasts Listen onApple Podcasts
  • Spotify Listen onSpotify
  • Google Podcasts Listen onGoogle Podcasts
  • Stitcher Listen onStitcher
  • Amazon Alexa Listen onAmazon Alexa
  • TuneIn Listen onTuneIn
Made by Longbeard